... 2023-10-01 02:20 .. 不同类型的神经元能够自组织成连接模式各异的神经环路,以在结构上支持实现丰富的认知功能。
人脑中不同类型的神经环路及其自适应能力促进了人类感知、学习、决策及其他高等认知功能的实现。
然而,当前的脉冲神经网络设计范式大多基于深度学习领域的结构启发。
这些结构主要由前馈连接占据主导地位,而没有考虑到不同类型的神经元,显著阻碍了脉冲神经网络在复杂任务上发挥其潜力。
从计算视角挖掘生物神经环路的丰富动力学特性及其意义,并应用于当前类脑脉冲神经网络的结构从而提升人工智能系统的能力,仍然是一个深刻而具有开放性的挑战。
科研团队以前馈和反馈连接与兴奋性和抑制性神经元结合为基础,为智能演化的计算建模提供了更具生物合理性的演化空间。
研究利用神经元的局部脉冲行为,通过脉冲时序依赖可塑性的局部规则,自适应地演化出通过自然演化生成的功能性神经环路,如前向兴奋、前向抑制、反馈抑制和侧向抑制,并结 .. UfqiNews ↓
2
本页Url
🤖 智能推荐